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We report the first observations of magnetic-field-independent corrections to the conductivity in gas
atom scattering of electrons on solid H. These incoherent corrections, which are substantially larger
than the weak-localization terms at high impurity densities, are estimated via an electron-trapping mod-
el. The model has essentially no adjustable parameters and gives a self-consistent extrapolation between
the weak- and strong-disorder limits. In the regime in which trapping is dominant we observe a residual
electron mobility ps~ T ~! associated with a lower quantum limit of diffusion.

PACS numbers: 73.20.Fz, 71.55.Jv

The nearly ideal two-dimensional electron gas
(2DEG) formed by depositing electrons on solid hydro-
gen at liquid-helium temperatures has proven to be a
unique and extraordinarily rich system in which to study
localization in a classical 2DEG.'® Previous magneto-
transport studies of electrons on hydrogen crystals, which
were purposely disordered by either photoinduced sur-
face defects'’ or ambient helium-gas atoms,”> have
demonstrated that both weak- and strong-localization
effects are readily observed in the system. Nominally,
weak localization was identified with the appearance of a
perturbatively small negative magnetoresistance at mag-
netic fields less than 1 T. Strong-localization effects
were characterized by the appearance of a disorder-
dependent energy threshold for conduction which, with
sufficiently strong disorder, can be several times larger
than kg T. Notwithstanding an extensive study 128 of the
above limiting characterizations of the effects of disorder
on the transport properties of electrons on hydrogen, a
consistent extrapolation between the weak- and strong-
localization regimes as it related to the measured con-
ductivity and mobility had remained elusive and it be-
came evident that temperature-dependence studies were
needed.

Gas atom scattering is mediated by a well-known and
tunable random potential for which we have an indepen-
dent theoretical estimate of the strength of the disorder.
In this respect the system provides a powerful and
straightforward experimental probe of the quantum
corrections to the Boltzmann conductivity as function of
the impurity density. Recently, Kirkpatrick and Belitz®
have shown via an exact perturbation calculation that in
a 3D disordered, noninteracting electron gas the lead-
ing-order correction to the dc conductivity is proportion-
al to A/Erty and not to the usual (h/Erto)> correction
of weak-localization thcory,'0 where Er is the Fermi en-
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ergy and 7o is the elastic-scattering time. Though the
nature of the 2D static impurity corrections are not yet
known,'' the h/Efto term is clearly evident in the 3D
electron-gas atom scattering data of Schwarz'? and we
believe that an analogous term is evident in the 2D data
described below. These incoherent impurity scattering
terms do not necessarily require the existence of time-
reversal symmetry and therefore cannot be fully probed
by the application of a magnetic field. Thus to investi-
gate the dc impurity corrections one must be able to
sweep the impurity density which is easily done in gas
atom scattering.

The details of our technique for measuring the con-
ductivity and mobility of the 2DEG have been published
elsewhere.'"” Magnetoconductance measurements were
made as a function of ambient helium-gas density, n,, at
several different temperatures. All of the hydrogen crys-
tals used in this study had an intrinsic 7=4 K mobility
greater than 0.5 m?/Vs and at gas densities greater than
approximately n, =10%" cm ~* the scattering was pre-
dominantly from gas density fluctuations. The measured
conductivity was fitted by the following modified Kubo
formula:*
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where B is the applied magnetic field, e is the electron
charge, ng is the 2D electron number density, m is the
bare electron mass, u =eto/m. is the electron mobility,
and E. is a localization cutoff which accounts for both
strong- and weak-localization effects. All of the dis-
order-dependent physics, at least in the low-carrier-
density limit, is carried in E.. We have chosen a phe-
nomenological form for E, which gives a consistent ex-
trapolation between the perturbative and highly disor-
dered regimes, '3
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where 7, is the electron dephasing time and v is the di-
gamma function. The second term on the right-hand
side of Eq. (2) is that of the usual coherent backscatter-
ing formalism where one observes a perturbative, field-
dependent negative contribution to the conductivity in
the presence of disorder. In zero field the thermal aver-
age over the digamma functions becomes In(z,/7p) and
in high fields becomes zero. In Ref. 2 we used only this
term for E. with Saitoh’s'’ semiclassical gas atom
scattering expression for u,

Hgas =3n°ha’ng/2ez) , (3)

to account for the zero-field conductivity as a function of
gas density where a=0.06 nm is the electron-helium
scattering length and (z)=1.7 nm is the effective Bohr
radius of an electron above the hydrogen surface.
Though we obtained quite satisfactory fits to o(ng) with
E.~nyg, the values of u used in this procedure are incon-
sistent with the detailed magnetoresistance data de-
scribed below where u ~! is seen to vary sublinearly with
ng at high gas densities. A more serious concern with
this analysis lies in the high-field behavior of the second
term. If it alone is used for E. then Eq. (2) predicts
E.=0 at high fields independent of the strength of the
disorder and one is led to the physically unrealistic con-
clusion that there can be no localized states in the high-
field limit.'* Thus, we have included an additional local-
ization threshold in Eq. (2), E2, which accounts for elec-
trons that are completely localized in deep potential fluc-
tuations.

The interaction between an electron and the gas is well
represented by the optical potential,’> AVy=(%%/m.)
x2maAng. The binding energy of an electron in a 2D
quantum well of radius Lo and depth AV, is
Eg=AVy(Lo) —h?*/2mgL§. For our case the helium
gas behaves as a nearly ideal gas and the scale depen-
dence of AV is given by (An2) = n,/(z)nL$, where the
denominator is the approximate volume of the electron
wave function. A reasonable estimate of EQ is obtained
by maximizing Eg with respect to Ly,

2 2
h 2(’:1) ng=yng, (4)

Ecoz (EB )max =
el
where y/kg = (1.3 K)/(10%° cm ~3). Note that Eq. (4)
predicts the same linear dependence on n, as does the
weak-localization correction in Eq. (2) with Eq. (3) sub-
stituted in for u. Equation (4), however, has no field
dependence and its derivation does not depend upon the
existence of extended states nor upon u _'—-ng at all gas
densities. A similar analysis for a 3D quantum well pre-
dicts E2*P~n2, in agreement with the high-density be-
havior of the 3D data of Schwarz.'?

An important assumption will be made in interpreting
the data with the above model. We will approximate the
average electron kinetic energy of that portion of the
Boltzmann distribution with £ > E. as being kzT, in-
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dependent of the size of E.. For a detailed qualitative
justification of this rather subtle restriction on the dy-
namics of the system, see Ref. 1. Assuming u to be a
relatively weak function of energy (u is independent of
energy in the weak-disorder limit) and integrating Eq.
(1) we have

o= eunoexpl —E.(B,ng)/kgT]
1+ (uB)?

Fits were made to magnetoresistance data taken at vari-
ous temperatures and helium densities using Eq. (5) in
which u, E?, and 7,/7o were independently varied for the
best fit. For the most part, 1 was determined by the
high-field slope of the magnetoresistance, 7,/7o by the
size of the low-field negative magnetoresistance, and E?
by the overall scale of o¢/c, where oy is the conductivity
at n,=0. Note that in the low-density limit, £, <kgT
in Eq. (5) and one recovers the usual field-dependent
weak-localization correction to the conductivity.

Shown in Fig. 1 are two magnetoresistance plots at ap-
proximately the same gas density, n, =3.6x10% cm ~3,
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FIG. 1. Magnetoresistance of the 2DEG normalized by its
ng =0 value. Both data sets are at n, =3.6x10%° cm 3. The
dashed lines are the best fits to the data using Egs. (5) and (2).
The fitting parameters are 4 =0.056 m?2/Vs, t,/10=6.22, ES/
kg =4.6 K for the T=7.7 K data; u=0.16 m?/Vs, 1,/10=5.1,
E%/kg=4.9 K for the T=1.8 K data.
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but at different temperatures. The dashed lines are the
predictions of Eq. (5) with u, /70, and E2 varied for
the best fit. The fits not only give roughly the same value
of EQ at each temperature but the value is in good agree-
ment with Eq. (4). Though the upper plot represents a
significantly less disordered 2DEG by virtue of its higher
temperature, the mobility is smaller than the lower-
temperature data. This peculiar behavior was seen in all
of the data at gas densities in which E. 2 kgT. We also
reported similar behavior for electrons on bare H, in
which there appeared to be a limiting mobility which
varied inversely as the temperature.' However, there is
always some doubt as to the homogeneity of light-
induced surface disorder and if some portions of the
crystals reported in Refs. 1 and 7 remained relatively
smooth then the reported limiting mobility may have ap-
peared as an artifact. On the other hand, if the residual
mobility was indeed real, it should also be seen in gas
atom scattering data where one is absolutely assured of
homogeneous disorder.

To this end we have measured the high-field mobility
as a function of helium-gas density at T=1.8, 4.0, 5.1,
and 7.7 K. In Fig. 2, we have plotted the change in in-
verse mobility due to helium gas Au =y — Usurhaces
as a function of gas density along with the semiclassical
inverse mobility as given by Eq. (3) (the 7=4 K second
virial coefficient is included in the theoretical curve).
Note that at each temperature the mobility is somewhat
lower than predicted at low gas densities but eventually
crosses the classical curve at high n,. Indeed, for the
3He-gas atom scattering data taken at 1.8 K the mobility
is approximately 2.5 times higher than expected classi-
cally at n,=5x10%° cm ~%. The conductivity, however,
is about a factor of 15 lower than expected classically.
The data also clearly show the inverse temperature
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FIG. 2. The gas atom scattering contribution to the inverse
mobility as a function of helium-gas density at several different
temperatures. The dashed lines are provided as a guide to the
eye. The solid line is g given in Eq. (3). *He gas was used
in the T=1.8 K data.

dependence of the saturated mobility as first suggested in
Ref. 1. We believe that this saturation behavior repre-
sents a quantum effect. The magnetic field only probes
that portion of the distribution with E > E. and in strong
disorder (i.e., E. = kgT) those electrons above E, are
near the quantum limit of diffusion associated with elec-
trons scattering on length scales of order of their de Bro-
glie wavelength. Since the average kinetic energy of the
conduction electrons is always kg7, this minimum
temperature-dependent length scale is preserved even in
strong disorder. Using the Einstein relation, the
minimum mobility before localization should be of or-
der!

Ures=eh/2makgT (6)

given a minimum 2D electron diffusivity of D=~h/2m.,.
Until our most recent measurements there was still some
question as to whether Eq. (6) represented a residual
quantum mobility or just the mobility at which strong-
localization effects begin to become important. The
latter point of view was taken in Refs. 2 and 8 primarily
as a justification for modeling the data with only the
second term in Eq. (2). The data in Fig. 2, however,
provide unequivocal evidence that p.. does in fact repre-
sent a true limiting mobility. We have plotted the satu-
ration values of Au ~' as a function of 7 in Fig. 3 and
they are indeed linear with a slope that corresponds to
D= § h/m, in very good agreement '® with Eq. (6).

The existence of this residual mobility has important
experimental ramifications. For instance, it masks the
negative magnetoresistance in Fig. 1(b), and it seems
likely that low-temperature backscattering studies will
have to be performed in a Hall geometry in order to re-
move the (uB)? term in the denominator of Eq. (1).
Our results also suggest that transport measurements in
extremely low-carrier-density'” GaAs 2DEG’s and other
nondegenerate systems'? will show similar effects of the
mobility being dominated by the conducting part of the
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FIG. 3. The inverse residual mobility as a function of tem-
perature. The solid line is a best linear fit to the data. The
slope is interpreted as kg/eD and gives D=} h/m..
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FIG. 4. The conductivity normalized by its ng =0 value as a
function of gas density. The curves have been offset to clearly
show the temperature dependence of the slopes (@, 7=1.8 K;
A, T=4 K;m T=51K; v, T=7.7 K). The solid lines are
linear best fits to the data points for which n, > 2x10%° ¢cm ~3.
Inset: Slopes as a function of inverse temperature where y is
defined in Eq. (4).
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distribution if the disorder is sufficiently strong.

The temperature dependence of the conductivity was
also studied and compared to Eq. (5) which predicts
activated-like behavior. Though surface scattering from
defects on the hydrogen and adsorbed helium'® is
significant at small gas densities, the density dependence
of E, can be extracted from the slopes of In(co/0) vs ng
at high gas densities. Shown as solid lines in Fig. 4 are
linear best fits to the data for n; >2x10% cm =3, Be-
cause of surface scattering effects the intercepts in these
data are not meaningful and the curves have been shifted
to clearly show the temperature dependence of the
slopes. In the inset of Fig. 4 we have plotted the slopes
as a function of T ~'. The slopes are linear in 7~ ' and
give an activation temperature T.=1.5 K at n,=10%
cm ~3. This should be compared with Eq. (4) which pre-
dicts T2~1.3 K at n, =10?° cm ~>. The nonzero inter-
cept in the inset is interesting and probably reflects the
apparent linear T dependence of u ~' in Eq. (2) at gas
densities well below mobility saturation; see Fig. 2. The
necessity of introducing the parameter E2 into the model
is especially evident in the 1.8-K data where the second
term in Eq. (2) (i.e., the weak-localization term) is never
greater than 1.5 K due to the relatively low value of
pres'. In fact, substitution of Eq. (6) into Eq. (2) reveals
that the weak-localization term can never be significantly
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larger than kgT.

In summary, we have modeled 2D electron-gas atom
scattering data by introducing a helium density-de-
pendent mobility edge which consists of a field-indepen-
dent trapping term and a weak-localization term. Our
estimate of the strength and density dependence of the
trapping term agrees well with the data and is consistent
with analogous 3D corrections to Boltzmann transport.
The temperature dependence of the residual mobility
is measured and gives an electron diffusivity of
D=1 h/m near the mobility edge.
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